硅發(fā)光取得進(jìn)展
另外,還出現(xiàn)了使硅光子的主角——硅自身發(fā)光的例子。東京大學(xué)研究生院工學(xué)系研究科教授、納米光子研究中心中心長大津元一的研發(fā)小組2011年發(fā)現(xiàn)硅可以發(fā)光。
據(jù)介紹,為硅通電,然后邊照射電磁波邊進(jìn)行p型摻雜的話,就會(huì)開始受激發(fā)射。已確認(rèn)利用該材料制作的硅LED能夠發(fā)光注5)。
注5) 發(fā)光波長為1.1~1.5μm,能在大帶寬內(nèi)發(fā)光。
通過不斷優(yōu)化元件,目前紅外光硅LED的外部量子效率超過了10%(圖9)。作為才開發(fā)2年的發(fā)光效率,即使與目前最新型白色LED的 30%左右相比,也已經(jīng)算十分高了。雖然效率還比較低,但已制作出通過紅外光激光振蕩的元件,以及可通過紅色光、綠色光、藍(lán)色光等發(fā)光的硅LED。大津表示,計(jì)劃使可用于硅光子的紅外激光2015年達(dá)到10%的效率。
圖9:實(shí)現(xiàn)與現(xiàn)有LED接近的發(fā)光效率
本圖為東京大學(xué)大津研究室正在開發(fā)的硅LED和硅激光元件的發(fā)光效率提高情況。紅外發(fā)光硅LED的外部發(fā)光效率超過了10%,正在靠近現(xiàn)有LED的約30%。(圖由《日經(jīng)電子》根據(jù)東京大學(xué)大津研究室的資料制作)
通過這些技術(shù)開發(fā),利用CMOS技術(shù)有望使半導(dǎo)體的任意位置成為光源。不僅是光傳輸,還能為顯示器等帶來巨大的影響。
能否打破1000個(gè)硅光子的集成壁壘
硅光子要想進(jìn)一步發(fā)展還存在兩大課題。一是,使光元件和光收發(fā)器大幅實(shí)現(xiàn)小型化和低耗電量化的方法。另一個(gè)是,進(jìn)一步實(shí)現(xiàn)大容量化的王牌——密集波分復(fù)用(DWDM)技術(shù)的利用。
在PECST等的研究成果中,光收發(fā)器的集成度目前有望實(shí)現(xiàn)526個(gè)/cm2,在不久的將來還可能會(huì)實(shí)現(xiàn)1000個(gè)/cm2(圖5)。但再往后,硅光子能否順利增加集成度就不得而知了。NTT特性科學(xué)基礎(chǔ)研究所、NTT納米光子中心中心長納富雅也表示,“硅光子的集成度存在1cm2約為1000個(gè)的壁壘”。
這種看法的理由是,構(gòu)成光收發(fā)器的各元件的小型化已經(jīng)到了極限。尺寸小于20μm見方的元件在硅光子中基本無法實(shí)現(xiàn)。因?yàn)樵倏s小元件尺寸的話,漏出的光會(huì)大幅增加,能量損失就會(huì)迅速增加。
瞄準(zhǔn)芯片上的路徑控制
對(duì)于這個(gè)問題,最有效的解決方法是光密封效果高的光子晶體(PhC)技術(shù)。NTT利用化合物半導(dǎo)體制作出光子晶體,開發(fā)了多種主動(dòng)光學(xué)元件(圖10)。目標(biāo)是超越光收發(fā)器,在芯片上實(shí)現(xiàn)采用光存儲(chǔ)器等的主動(dòng)路徑控制及簡單的信息處理等網(wǎng)絡(luò)。
圖10:利用化合物半導(dǎo)體光子結(jié)晶實(shí)現(xiàn)大規(guī)模光集成電路
本圖為NTT特性科學(xué)基礎(chǔ)研究所正在開發(fā)的、利用化合物半導(dǎo)體光子晶體的光傳輸技術(shù)群。與CMOS兼容技術(shù)相比,所占面積和耗電量均降低了2~3位數(shù)。光RAM等記錄介質(zhì)的開發(fā)也取得了成功。(攝影:NTT)
作為其核心技術(shù),目前已經(jīng)開發(fā)出了激光振蕩元件、光開關(guān)及光RAM等,每個(gè)元件的尺寸為5~15μm見方。這樣便能以100萬個(gè)/cm2的密度集成光元件。其中,光開關(guān)的耗電量非常小,只有660aJ/bit,與電信號(hào)相比,有望大幅降低耗電量。該公司就這些技術(shù)表示,“打算2025年前后實(shí)現(xiàn)能貼在微處理器上的智能光網(wǎng)絡(luò)芯片”(納富)。
現(xiàn)在的光子晶體未采用硅基,因?yàn)楹茈y采用硅基以高效率制作主動(dòng)元件。不過,結(jié)合發(fā)光的鍺和硅等技術(shù)的話,就有可能實(shí)現(xiàn)硅基光子晶體。
來源:電子發(fā)燒友網(wǎng)